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Abstract--The spin-up from rest flow in a cylindrical container, filled with a homogeneous suspension of 
light particles in a fluid, and instantaneously set into rapid rotation around its axis of symmetry, is 
investigated. An asymptotic solution of the "mixture" averaged continuum equations is developed, which 
indicates that the velocity field is similar to that of a homogeneous fluid. However, a remarkable 
distribution of the particle volume fraction, e (r, z, t), governed by ). ( = ratio of separation to spin-up time 
scales) shows up. A curved non-cylindrical interface is predicted to separate the shrinking mixture domain 
and the pure fluid accumulating near the cylindrical wall. Photographs taken in simple laboratory tests 
are presented, which qualitatively confirm the theoretical predictions on the shape and motion of the 
interface. 

Key Words: rotating mixture/suspension, spin-up, centrifugal separation, interface, experiment, 
Ekman layers. 

1. I N T R O D U C T I O N  

Spin-up from rest of a fluid is a very common, yet quite complex phenomenon. Essentially, it 
concerns the transient motion performed by an initially stationary fluid which is subsequently 
exposed to the action of a spinning solid boundary and eventually acquires a steady-state of 
prevailing angular velocity (ideally, a state of "solid body rotation"). Spin-up from rest is, 
obviously, an intrinsic stage of centrifugal processing of suspensions. In this context it deserves 
special attention because: (a) a considerable separation may take place before the conventional 
I'~*x (f~*x r*) centrifugal field is established in the mixture; (b) an inverse stratification (i.e. 
heavier fluid at smaller radii) arises, which is a potential trigger of an instability, remixing 
convection; and (c) the prediction and analysis of the complicated, non-intuitive flow field and 
particle distribution is a stringent test for two-phase flow methodology. 

A fundamental configuration for investigating spin-up is the cylindrical container, instan- 
taneously set into rapid rotation, t)*, around its axis of symmetry. When the filling fluid is 
homogeneous, the governing parameters are the Ekman number, E = p 8/p* f~*r*2; the aspect ratio, 
H = H*/r* and the Froude number, Fr = f~*r*:/g *. Here p8 and p8 denote the density and 
viscosity of the fluid, respectively; f~*, r* and H* are the angular velocity, outer radius and height 
of the container, respectively; and g* is the gravity acceleration (the asterisk designates dimensional 
variables). In rapid rotation E ,~ 1, Fr -1 <~ 1. In this case, the classical solutions (Wedemeyer 1964; 
Greenspan 1968) elucidate the following leading features, see figure 1: an inwardly moving 
cylindrical "spin-up front" separates between the non-rotatin[g inner core (I) and the partly 
spun-up region III; the quasi-steady Ekman layers (of thickness ~/#*/p* f2*, on the top and bottom 
caps, referred to as region II) continuously extract fluid from sector I and feed it into domain III. 
The process is effectively completed when all the non-rotating fluid has been flushed into region 
III, and the typical spin-up time scale is z*u = [(E~/2/H) fl*]-l. This simple "Wedemeyer model" has 
been subjected to refinements and verifications (Venezian 1970; Hyun et al. 1983) which shed more 
light on the flow field but are beyond the scope of the present discussion. 

Consider again the above-mentioned cylinder, but now filled with a mixture of particles 
(or droplets) of radius a* and density p* in a continuous fluid. Initially, the stationary mixture 
is well-blended, therefore, the volume fraction of particles e (r*; t* = 0) = e (0) = constant through- 
out the cylinder. Again, the angular velocity t *  is imposed on the container at t* = 0 and the 
subsequent flow field is of concern. As compared to Wedemeyer's problem, three additional basic 
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Figure 1. Basic features of spin-up flow in Wedemeyer's problem (homogeneous fluid). 

dimensionless parameters show up: the density difference, ~ =(pg-p*)/p*; the (modified) 
2 . , 2 n , ~ . / .  , .  and the initial volume fraction s(0). From the physical particle Taylor number j~ = 9" -- vc/~,c, 

standpoint, a new effect is introduced, namely, the separation of the suspension due to centrifugal 
buoyancy, associated with the time scale Z*p = (1~ I/~f~*) -~. The analysis of the corresponding 
mixture spin-up problem has been attempted elsewhere (Ungarish 1990) for small E, ~,/~ and e(0). 
In this pertinent range of parameters, the mixture velocity field is, to leading order, similar to that 
of a homogeneous fluid under identical spin-up circumstances, see figure 1. However, the evolution 
of this velocity field is accompanied by a very special change of the particle volume fraction, 
e(r*, t*). In the non-rotating core (I) there is obviously no centrifugal buoyancy and e = e(0). 
Mixture from this region is convected so rapidly through the Ekman layers that separation is 
insignificant and e = e (0) also prevails in region II. On the other hand, the mixture entering region 
III is thereafter subjected to the centrifugal action of its own angular velocity and, while moving 
inward, undergoes separation. Since the angular velocity is dependent on both time and radius and 
unseparated mixture is continuously supplied near the endplates, the profile of e/e(0) will be a 
non-trivial function of time, radius and axial distance from the endplates. The detailed distribution 
of particles is governed by two parameters: 2( = E~/2/I~ Ifln), the ratio between separation and 
spin-up scales); and s( = ~/1~1), the sign of the buoyant force acting on the dispersed phase. 

The previous study concentrated on the s = 1 case, corresponding to heavy particles, and the 
objective of the present paper is to investigate the s = - 1 setting, for particles lighter than the 
embedding fluid. There is a notable difference between these cases: for s = 1 the separated dispersed 
phase forms a sediment layer, with e = eM, on the outer wall (figure 2); whereas for s = - 1 the 
inwardly moving light particles are expected to leave a region of pure fluid between the outer wall 
and the mixture zone (figure 3). From the point of view of unsophisticated experimentation with 
suspensions, the above-mentioned difference is censorious. 
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Figure 2. Qualitative, particle distribution 
during spin-up of a mixture of heavy particles 

(s = 1). 

Figure 3. Qualitative, particle distribution 
during spin-up of a mixture of light 

particles (s = - 1). 

Common practice is to observe separation in a transparent container filled with a mixture of  
opaque particles in a transparent liquid. For  spin-up, vision into the container through the 
endplates is obstructed by the particles, e = e(0), in the Ekman layers that prevail on these walls. 
In the s = 1 case, the outer wall poses a similar obstacle, since it is covered by the sediment layer 
with e = eM. On the other hand, in the s = - 1 case the observation of  the mixture through the 
outer wall of  the cylinder is free. Moreover, for s = - 1 theory predicts a peculiarly curved interface 
between the mixture and pure fluid domains whose shape and stability are worthy of  scrutinization. 
Such an interface is a remarkable exception, since in conventional batch separation in simply 
shaped containers the geometry of  the mixture--pure fluid interface is similar to that of  the adjacent 
walls [a cylinder in the present case, see Greenspan (1983) and Ungarish & Greenspan (1984)]. 

Inspired by these considerations, this study focuses on the spin-up in a cylinder of  a mixture of 
light particles. The theoretical background is presented in section 2 and some visualization tests 
are reported in section 3. The observed interface was essentially stable and its shape in fair 
agreement with theoretical expectations. 

2. ANALYSIS  

The averaged continuum "mixture" formulation (Ishii 1975) is employed. The mixture fluid is 
assumed Newtonian and its effective viscosity is incorporated via a semi-empirical correlation (Ishii 
& Zuber 1979): 

~ - - z  = u ( ~ )  = l - - -  [ 1 ]  

where eM is the maximal packing fraction. 
The variables are scaled by the length r o*, density p* ,  velocity (f~*ro*) and pressure p ~ (fir*)2. 

In view of  [1], the effective Ekman number ~ is related to the conventional parameters E by 

g = ME,  

M = (• [e (0)])'/5; [2] 

therefore, [(gl/2/H)~~*]-I is the corresponding spin-up interval which scales the dimensionless 
time ~. 
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and 

In an inertial frame of reference, the dimensionless equations of motion are: 

total volume continuity, 

dispersed phase continuity, 
V. J = 0; [31 

c~ + V. JD = 0; [4] 

momentum balance, 
/~12 ~v ) 

(1 + ~e)t--~- ~ t  + v. Vv = - V p  + ~fV. {#(e)[Vv + (Vv) x - 20V. v]} 

1 + ~  
--V'e(1 - e ) ~  VRVR. [5] 

The basic kinematic relationships for mass velocities v and volume fluxes j read: 

[(1 + Ot)EV D -~- (1 -- e)Vc]" 
V R = V D - -  V C ; V = 

(1 + ~e) 

Jo=eV D; JC=(1--e)V c; j=jD+JC; [6a] 

the subscripts C and D designate the continuous and dispersed phases, respectively. If e and two 
of  the velocities are known, the others can be calculated in a straightforward manner. In particular, 
one obtains 

e(1 - e )  
JD - -  ej + e(1 -- e)Va; j = V -- a VR. [6b] 1 +~te 

The mixture model, which solves for v and e, requires a closure formula for the relative velocity, 
YR. It is assumed that the non-colloidal dispersed particles are very small (/3 ,~ 1) the density 
difference is moderate (1~1 < 1) and the relative motion is slow (ReR = Iv* ba*p*/p* < 1). In this 
case, the presumably dominant quasi-steady balance between the local "centrifugal buoyancy" and 
Stokesian drag yields 

1 - - e  
VR = --s ~ [v" Vv]l~ I/7. [7] 

This is not a centrifugal effect in the usual sense because an inertial frame of reference is used here. 
The "buoyant"  acceleration of the particle is rather a dynamic result of the complicated, 
non-hydrostatic motion of the fluid. The contrast with the classical gravity sedimentation problems, 
for which solutions can be derived from kinematic continuity arguments (Kynch 1952; Davis & 
Russell 1989) is evident. 

Initially, the mixture is motionless and homogeneously blended, v = 0, e = e(0), throughout the 
container. For t i> 0 + ,  the no slip--relative to the rotating walls--and no penetration boundary 
conditions are prescribed. 

The physico-mathematical formulation is complete, but the analysis requires major simplifica- 
tions. The investigation is subsequently restricted to the range of small E 1/2, fl, ct and e(0), and 
moderate H, for which perturbation methods can be applied in the same manner as for the s = 1 
case (Ungarish 1990). For the sake of completeness, some basic results are briefly rederived here. 
The cylindrical (r, 0, z) coordinates are used, where z is the axis of symmetry and v = uf + v~ + w£. 
The dimensionless angular velocity of the container is 1£. 

It can be argued that, in the above-mentioned range of parameters, the driving mechanism of 
the spin-up phenomena is the influx-efflux ("suction") of the Ekman layers, which gives rise to axial 
velocities O(gl/2). An order of magnitude consideration indicates that outside these thin Ekman 
layers an inviscid interior prevails, whose dependent variables can be expanded in powers of d "/2 
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as follows: 
~1/2 

u = - - ~ - - u l ( r , z ,  z ) + "  " ; 

81/2 
UR = ~ U R I ( r , z ,  Z) + ' ' "  ; 

V = rOOo(r , z ,x )  + ' ' ' ;  

VR = gl/2VRl (r, z ,  Z) + ' '  • ; 

W = g l / 2w j ( r ,  z ,  z )  + ' '  • ; 

WR = ~WR2 + " " "; 

p = p o ( r , z , z ) + ' ' ' ;  

= e ( r , z , z ) + ' "  . [8] 

The subscript "0" of  e is deliberately omitted, to avoid confusion with 8(0); in the subsequent 
analysis, e refers to the leading term only. In addition it is assumed that I~ le = O(g~/2). 

T h e  v e l o c i t y  f i e l d  

The radial, axial and azimuthal momentum equations yield, for the leading terms, 

co2r = d p o .  
dr ' 

and 

[91 

or, in a more convenient form, 

1 - ~  1 
URI = S - -  - -  ~Ogr, [15]  

AM #(e) 

00~0 1 c~ 2 0 .  [10]  
c~---~-- + u~ r~ Or r COo = 

Further substitution into the kinematic relationships [6b], gives, to leading order, 
~fl/2 

j ' : = - ~ - u l ( r , z ) ;  j ' 2=S l /2Wl .  [11] 

The volume continuity in a cylinder of radius r, from the bottom to top plates, can therefore be 
expressed as 

21rr~l /2ul(r ,  z )  + 2Q. = O. [12] 

Here Q is the volume flux in one Ekman layer, which will be approximated by 

=/rSI/2r2( 1 -- CO0)' [13] 

This formula for the Ekman layer transport, introduced by Wedemeyer (1964) (who actually used 
a slightly different coefficient of  proportionality) is the result of  a momentum-integral analysis. For 
homogeneous fluids, its validity can be proven in the limit co0~l and there is a great deal of 
evidence that it reproduces the main features of the Ekman layer "suction" in quite general flows. 
The applicability of  this correlation to mixtures can be heuristically justified if B, ~ and e are small; 
additional support in this direction has been provided by numerical results (Ungarish 1988). 

Equations [9]-[13], with the appropriate boundary conditions, constitute the classical inviscid 
model for spin-up. Thus, to leading order, the velocity field of  the spun-up mixture is identical with 
that of  a homogeneous fluid, as summarized in table 1. 

For the relative velocity, [7] and [8] yield 

H uR~ =sl~lfl  co2r [14] 
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Table 1. Velocity field outside the Ekman layers; here 
A =A(z)=e -2~ 

Region I, 0 ~< r 2 <.% A Region III, A ~< r: ~< 1 

U I - - r  I r 

o 0 0 I--A 1 - -  

where, again, 

El~2 
2 - I~lf l~" [161 

The evaluation of VR~ and WR2 is omitted because it can be shown that they do not contribute 
leading order terms to the distribution of the dispersed phase, the next object of investigation. 

The volume fraction and the mixture-pure fluid interface 

Equation [15] and table 1 indicate that a significant interphase radial motion takes place in region 
III and a redistribution of the volume fraction, e, is expected. A convenient equation for this 
variable is obtained by combining [4], [3] and [6b] into 

~] , ' 2  d e  

H dz + j '  Ve + V'  e(1 - e ) v  a = 0. [17] 

The corresponding balance for the leading terms of the expansion [8] yields, after arrangement, 

de V 1 , 2 -] de de 1 1 t~ 2 2 
~ + L l/1 -]- S ~-M (~ (e)(°°rJ  ~ +w~H-&z = - s - - ~ - M ~ ( e ) r & ° 9 ° r  ' [181 

where 

~(1 - 0  2 
¢,(~) = _ _  

~(~) 

and o0, ul and w, are explicitly defined in table 1. The initial condition is ~(r, 0 ) =  e(0). For the 
solution of  [18], three regions should be distinguished: 

Region I: the non-rotating interior, 0 ~< r ~< e -T. Since 09 o = 0, the solution of [18] 
is simply e = e(0) throughout this region. 

Region II: the Ekman layers. According to table l, these layers absorb mixture 
from region I, where e = e(0). Any element of  the absorbed fluid is 
transported to larger radii and effluxed into region III. The time elapsed 
between the influx and efflux of the element is O(f~*-l), much smaller 
than the separation interval, O[(1~ 113~*)-q. Consequently, fluid in the 
Ekman layers can be regarded as an extension of the mixture in region 
I, with e = e(0). 

Region III: the rotating interior, e T ~< r -%< 1. Here considerable departure from e(0) 
is expected, because: (a) the r.h.s, of  equation [18] is O ( - s / 2 ) ;  and (b) 
when s = - 1, a large domain of pure fluid, e = 0, develops, and when 
s = 1 a sediment layer, e = eM, appears. The boundary condition for the 
solution is derived from the important observation that region III 
contains only fluid effluxed by the Ekman layers (region II). Recalling 
the properties of region II, the boundary conditions become: 

E=e (0 )  a t z = 0 ,  H ( e - ~ < r ~ < l ) .  
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The value of  e(r, z, ~) in the mixture domain of region III can now be calculated by the method 
of  characteristics. Due to symmetry, only 0 <<. z <<. H/2 needs consideration. Upon using the 
notation, 

x = r  2, A = A ( Q = e  -2~, 

the characteristic equivalent of [18] is [A2] 2 1-~-~  
de - s - ~ - - ~ ( e )  

[19] 

[20a] 

on the path 

subject to 

dx l  )21 ~-~z=2 x 1 x - + S 2 ~ r A ( ~ : ~ l )  1 -  , [20b] 

d z =  A ( l _ 2 Z ' ] H ,  [20el 
dz 1 - A H J  

e = e(0) on z = 0, A ~< x ~ 1. [21] 

If  the term in brackets in [20a] equals 1, the conventional solid-body (COo = 1) rate of separation 
is recovered. 

The axial characteristic trajectory is unaffected by buoyancy and [20c] can be readily integrated: 

z 1[1 1--e -2~in ] 
H = 2  ] ---7 J" [22] 

This means that all the mixture particles in region III whose axial position is (z /H) at instance ~, 
have been effluxed by the Ekman layers at Tin in the sector e -2"m ~< r 2 ~< 1. In particular, the locus 
e-2'~< r2~< 1, (z/H)---1/2, at instance ~ corresponds to characteristics emitted from the corner 
~i, = 0, r = 1, z = 0. Since in this corner the inviscid solution displays a non-physical behaviour, 
the resulting characteristics are not reliable and, therefore, have been excluded from the present 
approximation. It can be argued that viscous diffusion and relaxation delay will eliminate that 
singularity in which case a smooth e, with (&/c3z)= 0 at z = HI2, is expected. 

The cases s = - 1 (light particles) is subsequently treated in detail. It is evident from [20a] that 
e(r, z, O/e(O) 1> 1 throughout the mixture region. Global volume conservation of the dispersed 
phase therefore requires that the volume occupied by the mixture shrinks, i.e. an expanding domain 
of pure fluid, e = 0, shows up. To explore this conclusion, consider the trajectory (XD, ZD) of a 
dispersed particle, etttuxed into domain III at z = 0, z = ~i, and x = x~. (A ~< xi, ~< 1). Employing 
the kinematic relation VD = V + (1 -- e)VR/(I + ~e), [15] and table 1, it follows that, to leading order, 
the radial component satisfies 

1_-5 dXD=2 x 1 - - 1  1 e 1-- [23] 
dz x 2MA(1 - A) ' 

and zD is given by [22]. Since the r.h.s of [23] is negative, XD is a monotonically decreasing function 
of ~ (or ZD); thus, the particles always move toward the axis of rotation, as expected. In particular, 
the locus of particles etttuxed at xi, = 1, z~ ~< z demarcates the domain beyond which no particles 
can be found at instance T. The typical shape is depicted in figure 3. This is a kinematic shock, 
the interface between mixture and pure fluid domains. It can be shown that this shock is "stable" 
from the point of view of the characteristics [20b, c]. 

In general, [19]-[23] should be solved numerically, for given parameters 2, H, e(0) and eM. Some 
simplification in calculation and representation is gained in the dilute limit, e--.0, where ~(e) = e, 
~(e) = 1 and M = 1. In this case, the kinematic shock [23] coincides with the outmost characteristic 
[20b] emanated at x = 1. The representative solutions, figures 4 and 5, indicate that the parameter 
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Figure 4. Motion of the interface (theory, dilute case): (a) ~ = 1, various 2; (b) 2 = 1, various T. 

2 has a strong influence on both e/e(0) and the motion of the shock. In general, e/e(0) increases 
with time, radial distance from the spin-up front, r - e  -*, and axial distance from the endplate 
(Ekman layer). As 2 decreases, the central part of the shock moves faster and its "heap" near the 
endplate is thinner. 

The trends of the present solution for large 2 are of special interest. In this limit (see the appendix) 
the locus of the interface (or outmost characteristic) is approximated by 

Xo (z, z) = 1 -- ~ (1 -- A ) In + O [24] 
A Z  

and the corresponding volume fraction satisfies 

' '  " (5) ln[e(r, z)/e(0)] = ~ In A Z  2 + 0 , [25] 

where Z = (1 - 2 z / H )  and A --e -2.. This indicates that when 2 is large, the spin-up stage z ~< 2 
has a minor influence on the distribution of the particles. In this case, the more conventional 
concept of centrifugal separation can be applied, i.e. the process can be regarded as starting with 
a mixture in solid body rotation and 8 = e (0), throughout the cylinder. 

It is important to notice that for 2 ~< 1 the ratio e/e(0) attains large values during spin-up. The 
dilute approximation is therefore valid only in the initial stages, unless e(0) is indeed very small. 
In the non-dilute case, the shock intersects characteristics and the integration of [23] is coupled to 
the solution of [20]-[22] via the value of ~ on the shock. Actually, this calculation requires 
interpolations in x only by taking advantage of the fact that [22] applies to both particles and 
characteristics. The non-diluteness hinders the motion of the interface and the growth of e. 

It is recalled that p = 1 + ee, therefore, in the present e < 0 case, an increase of e means a 
decrease of the mixture density. The results in figure 5 and table 1 clearly indicate an inverse radial 
stratification in the mixture region, i.e. the density is maximal in the non-rotating domain I, but 
in domain III it continuously decreases with r, while co increases, The stability of this structure is 
questionable, but the analytical treatment of this topic was not pursued here. This issue received 
attention during the experimental tests, and the conjecture is that the stable solution is practically 
valid for small e and e(0). 

3. LABORATORY TEST 

Simple qualitative experiments have been performed to test the theoretical predictions concerning 
the shape and motion of the interface. In addition, some indication on the stability of the flow was 
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sought. For observation and record purposes, the basic requirements were a spin-up interval o f  
at least 20 s while 0.5 < 2 < 1.5, which impose some compromises  on other desired parameters. 

A cylindrical transparent container (r* = 9.55 cm, H*  = 20.0 cm) placed on a turntable was used. 
The transparent cont inuous phase contains one-third glycerine and two-thirds water and the 
dispersed phase consists o f  opaque (white) polystyrene beads, sieved in the range 
3.00" 10 -2 < 2a* < 3.55. 10 -2 cm. The representative properties are: e(0) = 0.01, p~ = 1.082 g/cm 3, 
~*/p* = 0.029 c m 2 / s ,  0t = - 0 . 0 3 4  and a * =  1 .64 .10  -2 cm. The tested angular velocities and the 
resulting parameters are listed in table 2. The thickness o f  the Ekman layers in these tests is around 
0.5 mm. 

Table 2 

~ * ( r p m )  2 E|/2( - 10 -3) f l ( .  10 -2) r ~v (s) ~*(s )  ReRm~x Fr  

200 1.26 3.89 4.32 32.26 25.65 0.17 4.29 
250 0.90 3.48 5.40 20.65 22.94 0.26 6.70 
300 0.68 3.18 6.48 14.34 20.94 0.38 9.64 
350 0.54 2.94 7.56 10.53 19.39 0.51 13.13 
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Figure 6(a) (d). Legend opposite. 

The tests were as follows. Initially, the suspension was mixed by randomly shaking and 
tumbling the container, and then placed on the stationary turntable. After a short rest, the motor 
was switched on to the preset angular velocity. The subsequent motion in the cylinder was 
scrutinized under a slit beam in the (r, z) plane, and pictures were taken with a rapid Polaroid 
camera. 

All the tested cases were in essential agreement with the theoretical predictions: two distinct 
domains, of  mixture and pure fluid, have been observed. The interface between these domains was 
a bit blurred, but certainly of curved, non-cylindrical, fo rm--and  attached to the rims 
(r = 1, z = 0, z = H)  of  the cylinder during at least 2Z*u. The blurs of the interface can be attributed 
to non-uniformities in particle size and shape, local smoothing motions (not captured by the 
first-order theory) and the slow onset of instabilities. However, no clear-cut indication of flow 
instability was observed on the interface, interior or boundary layers. 

Some photographs, accompanied by the corresponding theoretical shape of the interface, are 
presented here. (The container has an outer ring which covers 1.8 cm of  the upper part, therefore 
the symmetry with respect to the midplane is not apparent in the photographs.) Figure 6 shows 
the position of  the interface for 2 = 0.68, at different r. The interface is practically attached to the 
rims of  the circular endplates during r ~< 1.9. At r = 2.7, however, for r ~> 0.75, ~o is so close to 
1 that the Ekman layer suction in this region is too weak to drag the particles to the periphery, 
against the buoyancy force. The qualitative agreement between the predicted and observed motion 
is good. 

Figure 7 shows the position of the interface for two different systems, 2 = 1.26 and 0.54, 
at approximately the same z. For  the smaller 2, the center of the interface moved farther from the 
outer wall and the heap on the endplate is thinner. Again, the qualitative agreement with the theory 
is good. 
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Figure 6. (a)-(e) Test, ~. =0 .68 ,  • = 0 . 8 ,  1.2, 1.5, 1.9 and 2.7; (f) calculated interfaces [e (0 )=0 .01 ,  
e M = 0.65]. 

4. C O N C L U D I N G  REMARKS 

The spin-up from rest in a cylinder, filled with a mixture of light particles and fluid, has been 
considered. The asymptotic analysis of the averaged continuum mixture model--for small E, ~, fl, 
e(0) and H = O (1)---predicts a peculiar space-time variation of the particle volume fraction, e, 
governed mainly by the parameter 2( = E~/2/lo~lfln). When 2 ~< 1, significant separation accompa- 
nies the spin-up process: large values of e/e(0) show up in the mixture domain and a growing region 
of pure fluid forms adjacent to the outer wall. The expected shape of the moving mixture-pure fluid 
interface is remarkably different from that of the boundaries. 

The simple laboratory tests reported here confirm, qualitatively, the theoretical results 
concerning the shape and motion of the interface. The visualized flow fields were apparently 
stable. 

These results illuminate new physical aspects of the mixture separation process. Also, they 
provide additional confidence in the predictive power of the "averaged continuum" models--for 
which very few verified non-trivial solutions are presently available. 

Sophisticated experiments are still required for a more comprehensive confirmation of the theory, 
especially regarding the values of e. Further analytical efforts are necessary for understanding 
viscous effects and the stability restrictions of the investigated flow field. 
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Figure 7. (a) Test, 2 = 1.26, z = 1.36; (b) test, 2 = 0.54, r = 1.33; (c) calculated interfaces [e(0)= 0.0l, 
~M = 0.65]. 
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APPENDIX 

Introduce the transformed variables: 

Z 
T = I - A ;  ~ = l - x ;  Z = l - 2 ~ ,  

(recall, A ----e-20. Equation [22] now reads 

TZ = Tin. [A. l] 

For the dilute case, [20a, b] yield: 

d---~=e~-(1 -¢)2(1_T) ~ - 1 +  -~ ; [A.2I 

and 

d T  = T ,~ (1 - T )  (1 - 1 - [ A . 3 ]  

Equations [A.1] and [A.3], with the initial condition ~ = 0 at T = T~,, describe both the shock and 
the outmost characteristic. As 2 ~> 1, an approximation for this locus is sought, letting 

5 ~ = i  ~' + G + ' " -  [a.4] 

From [A.3], the leading terms satisfy 

- - =  1 d¢l ¢ ' 4  [A.51 
dT T 1 - T "  

The solution, accounting for initial conditions, is 

T(1 - Ti.) 
~l  = Tin  

T,n(l - T) 

and, in view of [A.1], one obtains 

1 - T Z  
~ (T, Z)  = T In (1 - T)Z" [A.6] 

It is noted that the consistency of  [A.5] requires (¢1 IT) ,~ 2, which is not too restrictive, since 
spin-up is of  interest during ~ ~< 2 (T ~< 0.98). However, the midplane region Z ~ 0  is problematic, 
as already pointed out. 

In view of [A.4] and [A.6], [A.2] is approximated by 

_ 2 

e 2 (1 - T) T + O . [A.71 

With e = e(0) at T~ n, and using [A.1], the integration of  the leading term gives: 

t 1 T2(1 - Tin) 1 In 1 - TZ [A.8] 
In e(0) = ). In Ti~n(1 _ T) = 2 (1 - T)Z 2" 

Comparisons between the numerical solution of  [A.2] and [A.3] and approximations [A.6]-[A.8], 
for 2 = 20 and 50 display good agreement. The approximations overestimate both ~1 and e/e(0) 
and can therefore be used as bounds for these variables. This feature was anticipated, because it 
can be easily shown that the neglected terms on the r.h.s, of  both [A.5] and [A.7] are negative. 


